World’s first predictive AI for direct care of patients with COPD deployed in UK hospital

Lenus Health, in partnership with NHS Greater Glasgow and Clyde, have launched a ground-breaking study using machine learning to support direct care

A clinical investigation launched today will explore how artificial intelligence (AI) can be used in live point-of-care workflows to support the proactive delivery of guideline-based care and prevent emergency hospital admissions for people with Chronic Obstructive Pulmonary Disease (COPD).

COPD is a progressive and preventable disease that affects around 1.2 million people in the UK and is the second most common cause of emergency hospital admissions. The annual economic burden of COPD on the NHS is estimated as £1.9 billion with treatment following exacerbations of symptoms accounting for 70 per cent of these costs.

This “DYNAMIC-AI” clinical investigation is a 12-month feasibility study now underway in consenting patients with COPD resident in NHS Greater Glasgow and Clyde (NHSGGC) that uses machine learning based models to identify patients at highest risk of adverse events for review by clinicians. Under the study, a COPD multi-disciplinary team will consider model outputs in real time with the aim of allowing proactive interventions to improve outcomes and reduce emergency care requirements.

The project between Lenus Health and NHSGGC is the first to operationalise predictive AI in routine direct care of chronic conditions. It follows extensive co-design efforts with patients and clinicians to develop a technically viable and clinically explainable way of delivering machine learning derived risk scores into existing care pathways.

This is the first time we’re bringing together predictive AI insight for COPD into live clinical practice

Dr Chris Carlin, Consultant Respiratory Physician

“This is an incredibly exciting project. It’s the first time we’re bringing together predictive AI insight for COPD into live clinical practice,” said Dr Chris Carlin, consultant respiratory physician at NHSGGC, who is leading the investigation. “With the ageing population and rising prevalence and complexity of long-term conditions, clinicians are overwhelmed with data that they don’t have the capacity to review.

“We need to deploy assistive technologies to provide us with prioritised insights from patient data. These have the potential to give us back time to focus on patient-clinician human interactions and allows us to optimise preventative management to improve patient outcomes and quality of life rather than continue to firefight with unsustainable reactive unscheduled care.”

Machine learning models

Supported by a £1.2 million NHS Artificial Intelligence in Health and Care Award in 2021, Lenus Health’s team of data scientists and engineers have pioneered the development and training of four machine learning models to proactively identify patients with COPD who are at risk of adverse events and provide actionable insights to improve care-quality.

The AI in Health and Care Awards is a programme of the NHS AI Lab set up to accelerate the safe, ethical and effective adoption of AI in health and care.

The proprietary AI algorithms are UKCA marked and were trained using close to one million data points from historical electronic health records from a de-identified cohort of more than 55,000 patients with COPD resident in NHSGGC.
Lenus Health uses more than 80 data points to support the delivery of risk scores, significantly more than in a traditional rule-based system, which are known to cause numerous false alarms, leading to clinicians experiencing alarm fatigue at potential risk to patient care.
To combat this problem, Lenus Health has invested four years of research in model development focused on fairness and explainability, which enables clinicians to understand and interrogate the model’s scores and ensure they are bioplausible.

“Rule-based systems are static whereas machine learning is much more robust in the context of routine care,” explained Dr Carlin.

Clinical care teams will be provided with actionable insights from the models to use in multi-disciplinary team (MDT) reviews. By identifying high risk patients, they can be offered pro-active, preventative care to avoid the COPD symptom flare ups that currently cause 1 in 8 emergency hospital admissions.

We will be able to discuss with patients the level of care they want in advance rather than in an emergency situation

Dr Chris Carlin, Consultant Respiratory Physician

“One of the key things we hope this will tell us is which patients are at risk of adverse outcome so we can provide anticipatory care,” added Dr Carlin. “We will be able to discuss with patients the level of care they want in advance rather than in an emergency situation which is much more pressured.”

Addressing equality issues

COPD disproportionately affects deprived populations. It is estimated that the prevalence of COPD in the most deprived 10% of areas in the UK is almost double that of the least deprived 10%.

The project’s pioneering work on fairness provides a meaningful scientific contribution to identifying biases held in health data and ensuring models perform appropriately across age groups, gender, deprivation categories and ethnicity. As a result, it has the potential to improve access to healthcare to people living in socio-economically disadvantaged areas.

“Fairness is important across everything we do in healthcare,” said Dr Carlin. “A significant benefit of bringing in data-driven technology is that it has the potential to address equality and access issues across health and social care delivery.”

The data science approach, technology infrastructure and wider learnings from this exemplar study will accelerate the application of AI across other long-term conditions

Paul McGinness, CEO of Lenus Health

Lenus Health CEO, Paul McGinness, said: “This trial is the culmination of many years’ work training and testing models, developing the technical infrastructure on Azure to automate generation of model risk scores, and establishing processes and explainability features with the clinical team to act on the insights provided.

“We are confident that the introduction of clinical decision support based on AI-generated insights is the intervention which can truly transform management of chronic conditions like COPD by enabling prioritised care optimisation and enhanced proactive self-management support.

“We anticipate that the data science approach, technology infrastructure and wider learnings from this exemplar study will accelerate the application of AI across other long-term conditions to help address growing demands on health systems caused by increasing levels of multi-morbidity .”

Digital service model

The AI study builds on a previous collaboration between Lenus Health and NHSGGC, which produced a digital service model for supported self-management of COPD patients.

Patients currently using the digital COPD service at NHSGGC will have the option to consent to take part in the AI study, which has been given ethics and Medicines and Healthcare Products Regulatory Agency (MHRA) approval.

“Up until now, AI models have been used retrospectively in cohorts in which we can provide predictions looking back. We believe this is the first time there will be AI-derived predictive scores used directly within the day-to-day clinical workflow in COPD care,” said Dr Carlin. “I hope this will help us transform to a preventative, predictive and proactive care model that improves outcomes for patients and relieves pressures on the care system.”